
NEW PATHWAY TO THIA-2-CYCLANONES

L. G. Shagun, G. I. Sarapulova, L. P. Ermolyuk, and M. G. Voronkov

Keywords: β-alanine, glycine, 6-mercapto-6-phenyl-2-tetrahydrothiopyranone, 5-mercapto-5-phenyl-2-thiolanone, 1-chloro-2-phenylethane-2,2-dithiol.

In a continuation of a study of the chemical transformations of recently synthesized α -halo *gem*-dithiols, R–C(SH)₂–CH₂X (R = CH₃, (CH₃)₃C, C₆H₅, 4-CH₃C₆H₄, 1-C₁₀H₇, 5-Cl-2-C₄H₂S, X = F, Cl, Br) [1], we investigated the reaction of 1-chloro-2-phenylethane-2,2-dithiol (1) with amino acids with the aim of obtaining new heterocyclic systems containing both endocyclic nitrogen and sulfur atoms.

However, the reaction of 0.2 g (1 mmol) of *gem*-dithiol **1** with a molar equivalent of glycine in moist ether over 72 h and subsequent separation of the mixture on a column packed with silica gel L 400/100 and 10:1 chloroform–hexane as the eluent gave 5-mercapto-5-phenyl-2-thiolanone (**2**), which lacks nitrogen. Under analogous conditions, the reaction of *gem*-dithiol **1** with β -alanine gave 6-mercapto-6-phenyl-2-tetrahydrothiopyranone (**3**).

The structures of **2** and **3** were supported by ¹H NMR and IR spectroscopy. The IR spectra of **2** and **3** in chloroform have bands typical for carbonyl groups in 1,2-thiolactones (1690-1710 cm⁻¹) [2, 3]. The band at 1410-1420 cm⁻¹ corresponds to symmetric bending of the CH₂ fragment adjacent to the carbonyl group [4]. The C–S stretching vibrations appear at 710-720 cm⁻¹, which is in accord with the frequencies observed for endocyclic C–S bonds (these vibrations are noted at 690 cm⁻¹ in the spectra of linear sulfides) [1, 5]. The series of bands at 1280, 1180, 1000, and 890 cm⁻¹ are due to the skeletal vibrations of the saturated heterocycles in **2** and **3** [1]. The intensities of these bands and of v_s (CH₂) at 2860-2840 cm⁻¹ and v_{as} (CH₂) at 2920-2940 cm⁻¹ are quite enhanced as a consequence of the large number of methylene fragments in the six-membered heterocycle. The bands for the aromatic C–C bonds are found at 1600, 1580, and 1490 cm⁻¹, while the weak band at 2520 cm⁻¹ corresponds to mercapto S–H stretching vibrations.

The study of this new reaction and the mechanism for the formation of **2** and **3** is presently underway.

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 664033 Irkutsk, Russia; e-mail: voronkov@irioch.irk.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1418-1419, October, 2001. Original article submitted August 3, 2001.

5-Mercapto-5-phenyl-2-thiolanone (2) was obtained in 78% yield (0.16 g) as a thick oil, R_f 0.87 on a Silufol UV-254 plate (10:1 chloroform–hexane). ¹H NMR spectrum at 400 MHz (CDCl₃), δ , ppm: 3.45 (1H, s, SH); 4.22 (2H, m, CH₂); 4.67 (2H, m, CH₂); 7.46-7.93 (5H, m, C₆H₅). Found, %: C 56.95; H 4.22; S 29.87. C₁₀H₁₀OS₂. Calculated, %: C 57.11; H 4.79; S 30.49.

6-Mercapto-6-phenyl-2-tetrahydrothiopyranone (3) was obtained in 68% yield (0.15 g); mp 112-113°C (chloroform), R_f 0.76 on Silufol UV-254 (10:1 chloroform–hexane). ¹H NMR spectrum at 400 MHz (CDCl₃), δ, ppm: 3.45 (1H, s, SH); 4.07 (2H, m, CH₂); 4.48 (2H, m, CH₂); 4.68 (2H, m, CH₂); 7.50-7.93 (5H, m, C₆H₅). Found, %: C 58.78; H 5.15; S 28.85. C₁₁H₁₂OS₂. Calculated, %: C 58.89; H 5.39; S 28.58%.

REFERENCES

- 1. L. G. Shagun, I. A. Dorofeev, L. P. Ermolyuk, G. I. Sarapulova and M. G. Voronkov, *Zh. Org. Khim.*, in press.
- 2. A. R. Katritzky (editor), *Physical Methods in Heterocyclic Chemistry* [Russian translation], Khimiya, Moscow–Leningrad (1966).
- 3. S. F. Birch, R. A. Dear, N. J. Hanter, and E. V. Whitehead, J. Am. Chem. Soc., 81, 3430 (1959).
- 4. R. N. Jones and B. S. Gallagher, J. Am. Chem. Soc., 81, 5242 (1959).
- 5. N. J. Leonard and D. Choudnary, J. Am. Chem. Soc., 79, 156 (1957).